ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote.
نویسندگان
چکیده
The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.
منابع مشابه
DNA Induces Conformational Changes in a Recombinant Human Minichromosome Maintenance Complex*
ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombina...
متن کاملCrystal Structure of the Helicase Domain from the Replicative Helicase-Primase of Bacteriophage T7
Helicases that unwind DNA at the replication fork are ring-shaped oligomeric enzymes that move along one strand of a DNA duplex and catalyze the displacement of the complementary strand in a reaction that is coupled to nucleotide hydrolysis. The helicase domain of the replicative helicase-primase protein from bacteriophage T7 crystallized as a helical filament that resembles the Escherichia col...
متن کاملStructural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions
In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon a...
متن کاملPcrA Helicase, a Molecular Motor Studied from the Electronic to the Functional Level
Molecular motors are adenosine tri-phosphate (ATP) hydrolysis-driven, cellular proteins responsible for a wide variety of different tasks, such as transport, energy metabolism, and DNA processing. Their operation cycle spans a wide range of length and time scales, from the localized and fast chemical reaction in the catalytic site(s) to the large scale and much slower conformational motions inv...
متن کاملIn Silico Investigation of Conformational Motions in Superfamily 2 Helicase Proteins
Helicases are motor proteins that play a central role in the metabolism of DNA and RNA in biological cells. Using the energy of ATP molecules, they are able to translocate along the nucleic acids and unwind their duplex structure. They have been extensively characterized in the past and grouped into superfamilies based on structural similarities and sequential motifs. However, their functional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 30 شماره
صفحات -
تاریخ انتشار 2012